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Abstract—Collecting labeling information of time-to-event
analysis is naturally very time consuming, i.e., one has to wait
for the occurrence of the event of interest, which may not
always be observed for every instance. By taking advantage of
censored instances, survival analysis methods internally consider
more samples than standard regression methods, which partially
alleviates this data insufficiency problem. Whereas most existing
survival analysis models merely focus on a single survival pre-
diction task, when there are multiple related survival prediction
tasks, we may benefit from the tasks relatedness. Simultaneously
learning multiple related tasks, multi-task learning (MTL) pro-
vides a paradigm to alleviate data insufficiency by bridging data
from all tasks and improves generalization performance of all
tasks involved. Even though MTL has been extensively studied,
there is no existing work investigating MTL for survival analysis.
In this paper, we propose a novel multi-task survival analysis
framework that takes advantage of both censored instances and
task relatedness. Specifically, based on two common used task
relatedness assumptions, i.e., low-rank assumption and cluster
structure assumption, we formulate two concrete models, COX-
TRACE and COX-cCMTL, under the proposed framework, re-
spectively. We develop efficient algorithms and demonstrate the
performance of the proposed multi-task survival analysis models
on the The Cancer Genome Atlas (TCGA) dataset. Our results
show that the proposed approaches can significantly improve the
prediction performance in survival analysis and can also discover
some inherent relationships among different cancer types.

Keywords—Survival analysis; Multi-task learning; regulariza-
tion; Cox model.

I. INTRODUCTION

Accurately predicting the time to the event of interest is a
critical and practical problem in many real-world applications.
The event of interests can be various of things in different
problem settings, e.g., patient death in healthcare [1], device
failure in reliability engineering [2] and user clicking in
customer behavior analysis [3], etc. One major challenge in
this context is labeling sufficient number of training instances,
which often incurs prohibitive cost of time, i.e., one has to wait
for the occurrence of the event of interest and the latter may
not always be observed for every instance. Survival analysis
is an important branch of statistics which aims at solving
the aforementioned time prediction problem. Survival analysis
superiors to standard regression models because it not only
takes the instances whose event of interests have been observed
(uncensored instances) into account, but also considers the
instances whose event of interests have not been observed
(censored instances). Therefore, it leverages more information
than standard models, which could alleviate data insufficiency
and improve prediction performance.

In many real-world applications we often need to build
multiple survival prediction models that are related. For ex-
ample, predicting the time of occurrence of patients death
in multiple cancer types, predicting the time of occurrence
of defaults in multiple types of loans, and predicting the
battery life of multiple types of electronic devices. These
scenarios provide a chance to increase the sample size of
time-to-event prediction from both internal, through handling
censored instances, and external, learning multiple related
survival tasks simultaneously. However, in the field of survival
analysis, most of the prior works [4], [5], [6], [7], [8], [9] only
focus on dealing with a single survival prediction task; they
mainly concentrate on encoding the censored instances into the
learning formulations but barely consider the task relatedness
among multiple related survival prediction problems.

The concept of learning multiple related tasks in parallel
was introduced in [10]. Over the past two decades multi-
task learning (MTL) has been extensively studied to deal
with classification, standard regression, and clustering prob-
lems. Learning multiple related tasks simultaneously could
effectively increase the information for training each task and
hence improve the prediction performance. Thus, MTL is
especially beneficial when the training sample size is limited
for each task. Such problems are especially prevalent in several
domains such as healthcare and bioinformatics, where MTL
has achieved significant success, e.g., predicting disease pro-
gression [11], HIV therapy screening [12], and genomic data
analysis [13], etc. Survival analysis also plays an important
role in healthcare analysis [6], [4], [1]. However, multi-task
survival analysis has barely been studied so far, in spite of the
clear practical needs.

The goal of this paper is to bridge these two active research
fields of survival analysis and multi-task learning. In this
paper, we propose a unified framework for multi-task survival
analysis, where we employ the Cox proportional hazards model
[4], one of the most popular survival analysis methods, to en-
code censored instances. The Cox model is a semi-parametric
model such that the model coefficients can be learned without
knowing (or assuming) the underlying distribution, and this
property makes Cox model superior to parametric censored
regressions [6] in most cases. The proposed multi-task survival
analysis framework belongs to the regularized MTL approach
[14], where the assumptions of task relatedness is encoded via
regularization terms, and this approach has been extensively
studied in the past decade [15], [16], [17], [18], [19], [14],
[13]. Fig. 1 illustrates the proposed frame work, and under
this framework we study two concrete models according to
different task relatedness assumptions: low-rank assumption





Moreover, several useful variants of the basic Cox model
have been extensively studied in the past two decades. For
example, to deal with high-dimensional data and alleviate
model over-fitting, some sparsity-inducing regularization have
been integrated with the basic Cox model such as COX-
LASSO [7] which employs the L1 norm penalty, Elastic-Net
Cox (COX-EN) [8] which uses the elastic net penalty term,
and the group lasso penalized Cox regression [22]. In this
paper, the proposed multi-task survival analysis approaches
also belong to regularized Cox model, and in the experiment
we will compare the proposed models with Cox model and
corresponding related regularized Cox models to show the
advantage of multi-task survival analysis.

Besides the statistical approaches, some machine learning
based methods have been proposed in survival analysis. Re-
cently, in [23] and [9] survival prediction problem has been
viewed as a sequence of dependent classification tasks, and the
tasks relatedness are encoded via some MTL approaches. Note
that in these two papers the MTL approaches are used to solve
a single survival prediction problem; however, in our paper
we deal with multi-task survival analysis that learns multiple
related survival analysis problems in parallel.

B. Multi-task learning

MTL is a machine learning paradigm that leverages re-
latedness among the tasks to improve the generalization per-
formance of all machine learning models, by simultaneously
learning all the related tasks and transferring knowledge among
the tasks. The key building block of MTL algorithms is how
task relatedness is assumed and encoded into the learning
formulations. A conventional approach to achieve MTL is to
couple the learning process by using multi-task regularizations
[14]. The regularized MTL approach has a clear advantage
over other MTL approaches, because it can leverage large-scale
optimization algorithms such as proximal gradient techniques
[20], [16], [17], [19], which can efficiently handle complicated
constraints and/or non-smooth terms in the objective function.

In the past decade, there are many regularization terms
designed to impose different assumptions about how the tasks
are related. For example, multi-task feature learning [15], [16]
assumes that all tasks share a subset of features and some group
sparsity penalties are used to encode this assumption. Multi-
task subspace learning [17] assumes the coefficient vectors of
tasks come from the same subspace, which leads to a low-
rank structure within coefficient matrix. Multi-task relationship
learning assumes the task relatedness can be represented by
some abstract structures such as cluster structure [18], [19],
tree structure [24], and graph structure [14], [13]. In [25], the
authors provide a comprehensive study and implementation of
the commonly used multi-task regularizations. In addition to
these commonly used assumptions, there are more regularized
MTL formulations, which take domain specific knowledge into
account [11], [26] and make regularized MTL more attractive.

In the all aforementioned methods and other related works
(refer to [25]), the learning tasks are either classification or
standard regression. However, in this paper, the learning tasks
are the survival prediction problems. Recently, in [1] a transfer
learning model, Transfer-Cox, has been proposed to enable
knowledge transfer in survival analysis, which is a L2,1-norm

regularized Cox proportional hazards model. The Transfer-Cox
can be viewed as a special case in multi-task survival analysis,
i.e., it only has two tasks, source task and target task, and the
model emphasizes more on the target task. In the experiment
of our paper, we will generalize this model to equally learn
arbitrary number of learning tasks simultaneously, and denote
this model as COX-L2,1 for the sake of naming convention.

III. PROPOSED MODEL

In this section, firstly, some basic concepts of survival
analysis and Cox proportional hazards model are introduced.
Then we will propose a unified framework and two concrete
models to achieve the multi-task survival analysis.

A. Preliminaries

The primary goal in survival analysis is to model the
relationship between the feature vector (Xi ∈ R

1×p) and its
corresponding survival/failure time (Oi ∈ R

+). The survival
time can be observed from uncensored instances; however,
as censoring happens, for a censored instance we can only
obtain its last observed time, which is known as censored time
(Ci ∈ R

+). In practice, a censoring indicator (δi ∈ {0, 1})
is introduced to incorporate these two types of instances in
a same triplet format, (Xi, Ti, δi), where Ti is the observed
time, which equals to Oi for uncensored instances (δi = 1)
and Ci for censored instances (δi = 0). In addition, the most
common form of censoring that occurs in real-world scenarios
is right censoring, where the potential/unobserved survival
time of a censored instance is longer than or equal to its
corresponding censored time. In this paper, we deal with the
survival prediction under the scenario of right censoring.

The survival function Si(t) = Pr(Oi ≥ t) is an intuitive
description of the survival prediction, which represents the
probability that the survival time is not less than t. It can
be easily found out that all of the survival functions have
a same pattern, i.e., monotone decreasing and range from
1 to 0. Therefore, it is very difficult to model the slight
difference among different survival functions. To overcome
this drawback, the hazards function

hi(t) = lim
∆t→0

Pr(t ≤ Oi < t+∆t|Oi ≥ t)

∆t

is introduced in survival analysis, which is the event rate at
time t conditionally on survival until the time t or later. It is
also a non-negative function, but it has a wider range of values
and can take on a variety of shapes.

The hazard function for the Cox proportional hazards
model has the form:

h(t,Xi) = h0(t) exp(Xiβ), for i = 1, 2, ..., N, (1)

where the h0(t) is the baseline hazard function, which can be
an arbitrary non-negative function of time, and β ∈ R

p×1 is the
coefficient vector which needs to be learned in model training.
The Cox proportional hazards model is named after the fact
that in the model the hazard rate of any pair of instances
is a time-invariant constant number. Moreover, it is a semi-
parametric model as all the instances share a same baseline
hazard function, and the coefficient estimation is independent
from the h0(t), which can be achieved via maximizing the



partial likelihood [4]. In practice, to accommodate with tied
failures, i.e., two or more failure events that occur at the
same time, some methods such as the Efron’s method [27]
and the Breslow’s method [28] have been proposed. In this
paper, we employ the Breslow’s method in our model, for
N instances with a increasing list of unique failure times,
O1 < O2 < · · · < Oq , the partial likelihood is defined as
follows:

L(β) =

q
∏

i=1

exp(
∑

j∈Di
Xjβ)

[
∑

j∈Ri
exp(Xjβ)]di

, (2)

where Ri is the risk set at Oi, which consists of all instances
whose observed times are equal to or greater than Oi, Di

contains all instances whose failure time is Oi and di = |Di| is
the size of Di. Therefore, the coefficient vector can be learned
via minimizing the negative partial log-likelihood:

l(β) = −
q

∑

i=1







∑

j∈Di

Xjβ − di log[
∑

j∈Ri

exp(Xjβ)]







. (3)

B. A united framework for multi-task survival analysis

In data mining and machine learning, a common paradigm
for MTL can be formulated as a regularized empirical loss:

min
B

L(B) +R(B), (4)

where L(B) =
∑M

m=1
1

Nm
l(Bm); in addition, Bm, Nm, and

l(Bm) denote the parameters to be estimated, the number
of training instances, and the empirical loss on the train-
ing set with respect to the m-th task, respectively. R(B)
is the regularization term that encodes task relatedness and
B = [B1, B2, · · · , BM ] ∈ R

p×M . In standard multi-task
classification/regression problems, the logistic regression and
least squares are commonly used empirical loss function. In
survival analysis, Cox proportional hazards model is one of the
most widely used prediction methods, and we employ its loss
function (Eq. (3)) for all tasks. Therefore, the proposed united
framework for multi-task survival analysis can be formulated
as:

min
B

M
∑

m=1

−1

Nm

qm
∑

i=1

{

∑

j∈Dm
i

Xm
j Bm− dmi log

[

∑

j∈Rm
i

exp(Xm
j Bm)

]

}

+R(B), (5)

where Xm is the training dataset of m-th task, and qm is the
corresponding number of unique failure times. Dm

i , dmi , and
Rm

i denote the index of set of failure instances, number of
failure instances, and the risk set at i-th unique failure time of
m-th task, respectively.

Different assumptions on task relatedness lead to different
regularization terms. In the field of MTL, there are many
prior works that model relationships among tasks using novel
regularization terms, and most of them are non-smoothing.
In this paper, we will provide several prediction models for
multi-task survival analysis, based on two commonly used
assumptions of task relatedness.

In this paper, we employ the proximal gradient methods
(PGM) [20] as the workhorse to optimize the proposed learning
problem and estimate the model coefficients. This type of

methods only require O( 1√
ε
) iterations to achieve an accuracy

of ε, which is the optimal among first order methods. The
Algorithm 1 in the Appendix outlines the learning procedure
of PGM, and the key building block of PGM is to compute the
proximal operator, which is a regularized Euclidean projection
problem (Line 6 in Algorithm 1). In the subsequent sections,
for each proposed multi-task survival analysis model we will
provide an analytical solution for the proximal operator with
corresponding regularization term.

C. Trace-norm regularized multi-task survival analysis: COX-
TRACE model

The low rank assumption is a commonly and widely used
constraint in MTL, which assumes the estimated coefficients
from different tasks sharing a low-dimensional subspace. In-
tuitively, this assumption results in the following rank mini-
mization:

min
B

L(B) + λ rank(B), (6)

which is a NP-hard problem, and λ is a positive scale. In
practice, the trace norm (or nuclear norm) is a commonly-used
convex relaxation of the rank function, which is defined as the
sum of the singular values: ‖ B ‖∗=

∑

i σi(B). Therefore, the
proposed trace-norm regularized multi-task survival analysis
model, COX-TRACE, can be formulated as:

min
B

M
∑

m=1

−1

Nm

qm
∑

i=1

{

∑

j∈Dm
i

Xm
j Bm− dmi log

[

∑

j∈Rm
i

exp(Xm
j Bm)

]

}

+ λ ‖ B ‖∗ . (7)

Optimization:

The trace norm regularization has been studied extensively
in MTL, and proximal gradient based optimization method
is proposed in [17]. The key subroutine of proximal gradient
methods is to compute the proximal operator:

B̂ = argmin
B

1

2
‖ B −G ‖2F +λ ‖ B ‖∗, (8)

where G is known as gradient step: G = S − 1
γ
∆L(S). In

addition, γ is the step size, S is the current search point that
is a combination of previous points, i.e., in the i-th iteration it
is defined as:

S(i) = B(i) + αi(B
(i) −B(i−1)), (9)

and αi is the combination scalar. ∆L(S) is the gradient of
empirical loss at search point S, specifically, for all M tasks
we have:

∆L(S) =
[

l
′

(S1)

N1
,
l
′

(S2)

N2
, · · · , l

′

(SM )

NM

]

. (10)

In the Cox proportional hazards model based multi-task sur-
vival analysis, for all tasks the derivative of negative partial
log-likelihood function share the same formulation:

l
′

(β) = −
q

∑

i=1







∑

j∈Di

Xj − di

∑

j∈Ri
Xj exp(Xjβ)

∑

j∈Ri
exp(Xjβ)







. (11)

For each task, to calculate the derivative we just need to
plug into the corresponding training samples and search point.



In [17], an analytical solution of the corresponding proximal
operator has been proposed and can be summarized in the
following theorem.

Theorem 1: Given the gradient step G ∈ R
p×M defined in

Eq.(8), and let G = UΣV T be its singular value decomposition
(SVD), where U ∈ R

p×r and V ∈ R
M×r have orthonormal

columns, Σ = diag(σ1, · · · , σr) ∈ R
r×r, and r = rank(G).

Then the optimal solution of the proximal operator in Eq.(8) is

given by B̂ = UΣ(λ)V T , where Σ(λ) = diag(σ
(λ)
1 , · · · , σ(λ)

r )

and σ
(λ)
i = max{0, σi − λ}.

D. Clustered multi-task survival analysis: COX-cCMTL model

Many MTL algorithms assume that all learning tasks are
related. In practical applications, the tasks may exhibit a more
sophisticated group structure, where the estimated coefficients
of tasks from the same group are closer to each other than those
from a different group. This type of approaches are known as
clustered multi-task learning (CMTL), and intuitively we can
employ the sum-of-square error (SSE) function in K-means
clustering as the regularization term to encode the assumption
of clustering structure among multiple learning tasks.

Suppose all M tasks can be clustered into K < M
clusters, and the index set of the k-th cluster is defined as
Ik = {v|v ∈ clusterk}. Let B̄k = 1

nk

∑

v∈Ik
Bv be the mean

of the coefficient vectors of the k-th cluster, the SSE [29] can
be formulated as:

K
∑

k=1

∑

v∈Ik

‖ Bv − B̄k ‖22= tr(BBT )− tr(BFFTBT ), (12)

where tr(·) represents the trace of matrix and F ∈ R
M×K is

an orthogonal cluster indicator matrix:

Fm,k =

{

1√
nk

if m ∈ Ik
0 if m /∈ Ik

(13)

However, the SSE in Eq.(12) is not easy to minimize as it is
not-convex due to F has the aforementioned special structure.
To deal with these issues, a spectral relaxation [29] has been
proposed, which ignores the special structure of F but keeps
the orthogonality requirement only, i.e., FTF = IK ; moreover,
a convex relaxation [18] has been proposed, which relaxes the
feasible domain of FFT into a convex set W = {W |tr(W ) =
M,W � I,W ∈ S

M
+ } and approximate FFT via W . In

summary, these two aforementioned relaxation results in the
following convex relaxed CMTL:

min
B,W

L(B) + ρ1[tr(BBT )− tr(BWBT )] + ρ2tr(BBT ),

s. t. tr(W ) = K,W � I,W ∈ S
M
+ (14)

where tr(BBT ) =‖ B ‖2F , the square of Frobenius norm
of B, which is used to shrink the coefficients and alleviate
multicollinearity. Let η = ρ2

ρ1
> 0 and through some simple al-

gebra calculations we can finally formulate the convex relaxed
clustered multi-task survival analysis model, COX-cCMTL, as:

min
B,W

M
∑

m=1

−1

Nm

qm
∑

i=1

{

∑

j∈Dm
i

Xm
j Bm− dmi log

[

∑

j∈Rm
i

exp(Xm
j Bm)

]

}

+ ρ1η(1 + η)tr(B(ηI +W )−1BT ).

s. t. tr(W ) = K,W � I,W ∈ S
M
+ (15)

Optimization:

The model proposed in Eq.(15) is jointly convex with
respect to B and W . Moreover, it is an convex unconstrained
smooth optimization problem with respect to B, and its global
optimal can be achieved via iteratively updating its gradient
step:

GB = S − 1

γ
[∆L(S) + 2ρ1η(1 + η)(ηI +WS)

−1ST ],

where S is the search point of B that is defined in Eq.(9),
WS is the search point of W and in the i-th iteration it can be

similarly calculated as W
(i)
S = W (i)+αi(W

(i)−W (i−1)), and
∆L(S) is the gradient of loss function as shown in Eq.(10).

The optimization of W is a convex constrained mini-
mization problem, and its corresponding proximal operator is
formulated as:

min
W

‖W −GW‖2F , s.t. tr(W ) = K,W � I,W ∈ S
M
+ ,

(16)
where GW is the gradient step of W at the search point WS

and can be calculated as:

GW = WS +
ρ1η(1 + η)

γ
STS(ηI +WS)

−2. (17)

An analytical solution of Eq.(16) has been proposed [19],
which can be summarized in the following theorem.

Theorem 2: Given the gradient step GW ∈ S
M×M , and let

GM = V Σ̂V T be its eigen-decomposition, where V ∈ R
M×M

is orthonormal, and Σ̂ = diag(σ̂1, · · · , σ̂M ) ∈ R
M×M . Let

Σ∗ = diag(σ∗
1 , · · · , σ∗

M ) ∈ R
M×M , where {σ∗

1 , · · · , σ∗
M} is

the optimal solution to the following optimization problem:

min
{σm}

M
∑

m=1

(σm − σ̂m)2.

s. t.

M
∑

m=1

σm = K, 0 ≤ σm ≤ 1, ∀m = 1, · · · ,M (18)

Then the optimal solution of the proximal operator in Eq.(16)

is given by M̂ = V Σ∗V T .

IV. EXPERIMENTAL RESULT

In this section, we will first describe the dataset used in our
experiment and demonstrate the prediction performance of the
proposed multi-task survival analysis models.

A. Experimental Dataset

To evaluate the models and demonstrate the effectiveness
of multi-task survival analysis, we used The Cancer Genome
Atlas (TCGA) dataset in our experiment. TCGA is one of the
most well-known cancer genome programs, which is supported
by the National Cancer Institute’s Genomic Data Commons. It
includes both molecular profiles and clinical data for 33 types
of tumors profiled with different high-throughput platforms.
In our experiment, we focus on analyzing the relationship
between micro-RNAs (miRNA) and the survival time of cancer
patients, where the miRNA functions in RNA silencing and
post-transcriptional regulation of gene expression. We use the
R package “TCGA2STAT” [30] to query and download TCGA



TABLE I: Basic statistics of the 21 selected cancer types.

Cancer name Primary Site Acronym # Instances # Uncensored

Adrenocortical Carcinoma Adrenal Gland ACC 80 29

Bladder Urothelial Carcinoma Bladder BLCA 407 178

Breast Invasive Carcinoma Breast BRCA 754 105

Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma Cervix CESC 307 72

Cholangiocarcinoma Bile Duct CHOL 36 18

Esophageal Carcinoma Esophagus ESCA 184 77

Head and Neck Squamous Cell Carcinoma Head and Neck HNSC 484 203

Kidney Renal Clear Cell Carcinoma Kidney KIRC 254 76

Kidney Renal Papillary Cell Carcinoma Kidney KIRP 290 44

Brain Lower Grade Glioma Brain LGG 510 124

Liver Hepatocellular Carcinoma Liver LIHC 371 128

Lung Adenocarcinoma Lung LUAD 441 157

Lung Squamous Cell Carcinoma Lung LUSC 338 137

Mesothelioma Pleura MESO 86 73

Prostate Adenocarcinoma Prostate PRAD 178 93

Sarcoma Soft Tissue SARC 259 98

Skin Cutaneous Melanoma Skin SKCM 97 26

Stomach Adenocarcinoma Stomach STAD 382 147

Uterine Corpus Endometrial Carcinoma Uterus UCEC 410 72

Uterine Carcinosarcoma Uterus UCS 56 34

Uveal Melanoma Eye UVM 80 23

data directly into a unified data repository; more specifically,
we download clinical data and the raw counts of miRNA
sequencing via the getTCGA function.

In TCGA, the miRNA expression of 29 out of 33 tumor
types was profiled using Illumina HiSeq 2000 miRNA se-
quencing and each miRNA sequence has a length of 1046.
Among these 29 tumor types, the number of uncensored
instances in 8 tumor types are too small (< 18) and hence these
8 tumor types were eliminated for our evaluation. Therefore,
finally we get 21 tumor types which are shown in Table I
with their basic statistics. In the table, the columns titled
“# Uncensored” correspond to the number of uncensored
instances in each selected cancer type, respectively. For these
tumor types, the event of interest is patient death; therefore,
an uncensored instance refers to the patient being dead during
the study, while a censored instance refers to the corresponding
patient is still alive at the last observed time (which will be
the censored time).

B. Performance Comparison

We compare our proposed multi-task learning survival
analysis models with several related single-task learning (STL)
survival analysis models and the state-of-the-art multi-task
learning survival analysis models. Since our proposed models
are Cox-based models, we choose both Cox proportional
hazards model and two other popular regularized Cox models:
COX-LASSO and COX-EN as single-task learning comparison
methods. In our experiments, these three survival analysis

methods are applied under two settings: 1) Individual setting,
i.e., a prediction model is trained for each tumor type; 2)
Global setting, i.e., a prediction model is trained for all tumor
types. In the individual setting the heterogeneity among tasks
are fully considered but the task relatedness are totally ignored;
on the contrary, in the global setting all heterogeneities have
been ignored. In our experiment, the Cox model is trained by
using the coxph function in the survival package [31], and the
other two STL regularized Cox models are trained by using the
cocktail function in the fastcox package [32]. We implement
all the multi-task learning survival models, including both the
proposed two models (COX-TRACE and COX-cCMTL) and
the COX-L2,1 model, via Matlab and the source code can be
download at the following address 1.

The concordance index (C-index), or concordance prob-
ability, is a commonly used evaluation metric in survival

analysis [33]. For a pair of bivariate observations (T1, T̂1) and

(T2, T̂2), the concordance probability is defined as:

c = Pr(T̂1 > T̂2|T1 ≥ T2), (19)

where Ti is the actual time, and T̂i is the predicted one.
In practice it can be calculated based on the proportion of
corrected ordered comparable instance pairs among all com-
parable instance pairs. In the standard Cox and regularized Cox
models, the hazard ratio is modeled to describe the time-to-
event data. The instances with a low hazard rate should survive

1https://github.com/yanlirock/Multi-task_Survival_Analysis



TABLE II: Performance comparison of the multi-task survival analysis models and related single-task survival analysis models
using C-index values (along with their standard deviations).

Tumor Individual setting Global setting Multi-task survival analysis models

Type COX COX-LASSO COX-EN COX COX-LASSO COX-EN COX-L2,1L2,1L2,1 COX-TRACE COX-cCMTL

ACC
0.6912 0.6737 0.7186 0.7116 0.7662 0.7679 0.8128 0.8154 0.8008

(0.0301) (0.0324) (0.0326) (0.0307) (0.0565) (0.0366) (0.0761) (0.0319) (0.0328)

BLCA
0.5610 0.5244 0.5385 0.5142 0.5473 0.5429 0.6048 0.6129 0.6206

(0.4971) (0.4904) (0.4982) (0.0396) (0.0317) (0.0399) (0.0178) (0.0067) (0.0132)

BRCA
0.5478 0.5881 0.5641 0.5456 0.5383 0.5475 0.6265 0.6024 0.6232

(0.0351) (0.0502) (0.0418) (0.0634) (0.0599) (0.0702) (0.0422) (0.0295) (0.0380)

CESC
0.5715 0.5756 0.5539 0.6019 0.6403 0.6274 0.6791 0.5915 0.6299

(0.5784) (0.5495) (0.5615) (0.0833) (0.0141) (0.0425) (0.0686) (0.0321) (0.0663)

CHOL
0.4798 0.5517 0.5428 0.5169 0.5118 0.5008 0.6453 0.5565 0.5615

(0.0314) (0.0254) (0.0127) (0.0651) (0.1211) (0.0732) (0.1824) (0.1075) (0.1037)

ESCA
0.5600 0.5176 0.5166 0.5382 0.5365 0.5640 0.5935 0.5770 0.5969

(0.6938) (0.5908) (0.6510) (0.0857) (0.0876) (0.0694) (0.0674) (0.0723) (0.0428)

HNSC
0.5092 0.5134 0.5155 0.5412 0.5791 0.5732 0.5839 0.5231 0.5542

(0.0379) (0.0554) (0.0148) (0.0347) (0.0463) (0.0452) (0.0159) (0.0248) (0.0257)

KIRC
0.6006 0.6294 0.6083 0.5308 0.6069 0.5899 0.6704 0.6913 0.7037

(0.5283) (0.5625) (0.5671) (0.0175) (0.0151) (0.0013) (0.0608) (0.0348) (0.0248)

KIRP
0.7451 0.7403 0.7494 0.6964 0.7678 0.7410 0.8030 0.7943 0.8042

(0.0392) (0.0459) (0.0380) (0.0620) (0.0553) (0.0191) (0.0528) (0.0410) (0.0539)

LGG
0.6948 0.6803 0.6976 0.6736 0.7186 0.7232 0.7502 0.7441 0.7661

(0.5928) (0.5966) (0.5942) (0.0858) (0.0988) (0.1160) (0.0783) (0.0895) (0.0934)

LIHC
0.5341 0.5517 0.5454 0.5477 0.5903 0.5800 0.6496 0.6055 0.6514

(0.0234) (0.0355) (0.0257) (0.0472) (0.0469) (0.0513) (0.0438) (0.0181) (0.0348)

LUAD
0.4971 0.4904 0.4982 0.5677 0.6024 0.6081 0.5690 0.5548 0.5967

(0.5355) (0.5776) (0.5273) (0.0316) (0.0156) (0.0415) (0.0107) (0.0443) (0.0363)

LUSC
0.5784 0.5495 0.5615 0.5434 0.5340 0.5547 0.5714 0.6006 0.5998

(0.0423) (0.1503) (0.1214) (0.0627) (0.0380) (0.0533) (0.0195) (0.0267) (0.0406)

MESO
0.6938 0.5908 0.6510 0.5882 0.6646 0.6534 0.6793 0.7091 0.7169

(0.4625) (0.4986) (0.4855) (0.0556) (0.0529) (0.0246) (0.0438) (0.0751) (0.0529)

PAAD
0.5283 0.5625 0.5671 0.5436 0.5573 0.5665 0.5796 0.5453 0.5572

(0.0156) (0.0237) (0.0225) (0.0097) (0.0760) (0.0561) (0.0638) (0.0342) (0.0157)

SARC
0.5928 0.5966 0.5942 0.5523 0.5759 0.5594 0.6177 0.6457 0.6573

(0.6374) (0.5422) (0.5764) (0.0269) (0.0687) (0.0455) (0.0175) (0.0219) (0.0244)

SKCM
0.5355 0.5776 0.5273 0.4918 0.5726 0.5621 0.6535 0.6160 0.5960

(0.0162) (0.0227) (0.0266) (0.0960) (0.0614) (0.0987) (0.0538) (0.0387) (0.0380)

STAD
0.4625 0.4986 0.4855 0.5431 0.4852 0.5144 0.5544 0.4850 0.5237

(0.4859) (0.4468) (0.4492) (0.0375) (0.0383) (0.0356) (0.0345) (0.0257) (0.0337)

UCEC
0.6374 0.5422 0.5764 0.4737 0.5678 0.5465 0.6259 0.6435 0.6554

(0.0427) (0.0739) (0.0506) (0.0915) (0.0894) (0.0880) (0.0412) (0.0319) (0.0126)

UCS
0.4859 0.4468 0.4492 0.4210 0.3934 0.4007 0.6764 0.4745 0.5440

(0.7242) (0.6415) (0.7630) (0.0724) (0.0578) (0.0776) (0.0489) (0.0425) (0.1021)

UVM
0.7242 0.6415 0.7630 0.5611 0.5809 0.5480 0.8005 0.8050 0.8176

(0.0776) (0.0839) (0.0290) (0.1559) (0.0528) (0.1790) (0.0551) (0.0106) (0.0109)



longer, so the C-index is calculated as follows:

c =
1

num

∑

i∈{1···N |δi=1}

∑

Tj>Ti

I[Xiβ̂ > Xj β̂], (20)

where num denotes the number of comparable instance pairs
and I[·] is the indicator function. We can observe that the C-
index computation requires a certain number of comparable
instance pairs, so the testing data should contain enough
samples; therefore, we use 3-folds cross validation for model
evaluation as the sample size of some tumor types are very
small.

Fig. 2: The effect of cluster numbers in the COX-cCMTL
model.

The number of clusters is an important parameter in the
proposed COX-cCMTL model. In our experiment, to determine
a suitable cluster number for our cancer patients survival
analysis, we have conducted an exhaustive search that starts
from 2 clusters and lasts until more than one cluster are
observed with only one tumor type. In Fig. 2, we present the
performance of COX-cCMTL under each setting of the number
of clusters by taking the weighted average of C-index, i.e.,∑M

m=1 Nmcm∑
M
m=1 Nm

where cm is the C-index value of the m-th task.

In Table II, we show the performance results of C-index
values of different algorithms, and for COX-cCMTL we present
its results under the best cluster number, which is 8 as the
corresponding weighted average of C-index in Fig. 2 is the
highest one. The results show that in general the multi-
task survival analysis models performs better than traditional
related single-task survival analysis models. Specifically, the
COX-cCMTL model and COX-L2,1 model perform very well
in most tumor types; the COX-cCMTL model is suitable for
cancer patients death prediction as its assumption agrees with
the fact that not all tumor types are related under a same
pattern, and the COX-L2,1 model works well because L2,1-
norm can induce sparsity and our experimental dataset is high-
dimensional miRNA sequencing data.

C. Tumor Group Discovery

In COX-cCMTL model, we assume that there is a underly-
ing group structure among different tasks, e.g., in our cancer
patients study we assume not all types of tumor are related
under a same pattern and some of them can be clustered
into different groups. The results in Table II show that this
group structure assumption is suitable for survival analysis
in cancer patients. The proposed COX-cCMTL model is able

to discover the underlying group structure and leverage the
structure information to improve prediction performance.

In this section, we would like to discuss our observations
about the group structure. From Fig. 2, we observe that in our
experimental dataset the COX-cCMTL model performs the best
when the tumor types are grouped into 8 clusters. Therefore,
in Table III, we present the corresponding discovered group
structure.

We observe that the clustering result of some groups are
supported by domain knowledge and related literature. For
example, UCEC and UCS belong to one group that meets the
fact that their primary sites are both uterus, and similarly two
kidney cancers, KIRC and KIRP, belong to the same group.
However, some group results against our common sense,
e.g., two types of lung cancers, LUAD and LUSC, belong
to different groups. To explain this phenomenon we have
consulted some clinical research papers. The LUAD usually
originates in peripheral lung tissue (gland cell), while LUSC
tends to be more centrally located and commonly originates in
epithelial cells [34]; therefore, these two types of cancer have
been grouped into different clusters. In addition, epithelial is
one of the four basic types of animal tissue and lots of tumors
can be viewed as epithelial tumors such as LIHC [35], LUSC
and HNSC [36], and this supports our results of group 6 (G6
in Table III).

TABLE III: The group structure of tumor types under 8 clusters

Tumor Types Tumor Types

G1 BRCA, CHOL, ESCA G5 BLCA, CESC

G2 SKCM, UCEC, UCS G6 HNSC, KIRC, KIRP, LIHC, LUSC

G3 LUAD, SARC, STAD G7 LGG, MESO

G4 ACC, PAAD G8 UVM

D. Scalability study of the proposed two models

The computational time of the proposed two models are
mainly depended on the computational costs of the func-
tion value, gradient value, and proximal projection. Thanks
to the risk set updating method proposed in [8], for the
m-th task the computational costs of negative partial log-

likelihood, l(β), and its gradient, l
′

(β), are both O(Nmp).
For COX-TRACE model, the computational cost of proximal
projection is dominated by the SVD in Theorem 1, which
is O(min{p2M,M2p}). In our case, usually M < p; there-
fore, the total computational cost of COX-TRACE model is

O((
∑M

m=1 Nm+M2)p). For COX-cCMTL model, it will take
O(p2M) to calculate the penalty term and O(M3) to calculate
eigen-decomposition in Theorem 2. Hence, in summary, the

time complexity of COX-cCMTL model is O(
∑M

m=1 Nmp +
p2M + M3). In addition, in order to present the scalability
of the proposed models in practice, in Fig.3, we demonstrate
the scalability of the proposed two models with respect to
the sample size, feature dimensionality, and task number,
respectively.

V. CONCLUSION

In this paper, we proposed a unified framework for multi-
task survival analysis, which extends the concept of multi-
task learning to survival analysis. The proposed framework



belongs to the regularized multi-task learning, where the Cox
model is used to model the time to the event of interests
and regularization terms are used to encode the assumption
of task relatedness. Based on the proposed framework, we
develop two concrete models, COX-TRACE and COX-cCMTL.
These two models encode two commonly used task relatedness
assumptions, i.e., low-rank assumption and group structure
assumption, and the proximal gradient methods are employed
to train them effectively. We demonstrate the performance of
the proposed multi-task survival analysis models using the
well known The Cancer Genome Atlas (TCGA) dataset to
model the death time of cancer patients and discover the
relationship among various of cancers. In the future, we plan to
develop more advanced multi-task survival analysis methods,
which can take the domain knowledge into account during the
problem formulation.
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APPENDIX

Algorithm 1: proximal gradient algorithm used for
model training

Input: Initial coefficient matrix B(0), and
corresponding regularization scales

Output: B̂

1 Initialize: B(1) = B(0), d−1 = 0, d0 = 1,γ0 = 1,i = 1;
2 repeat

3 Set αi =
di−2−1
di−1

, S(i) = B(i) + αi(B
(i) −B(i−1));

4 for j = 1, 2, · · · do

5 Set γ = 2jγi−1;
6 Calculate proximal operator:

B(i+1) = argminB∈C Πγ,S(B);
7 if f(B(i+1)) ≤ Πγ,S(i)(B(i+1)) then

8 γi = γ, break ;
9 end

10 end

11 di =
1+

√
1+4d2

i−1

2 ;
12 i = i+ 1;

13 until Convergence of B(i);

14 B̂ = B(i);

Algorithm 1 outlines the general framework of proximal
gradient methods. Its key building block is the calculation of
proximal operator which shows in line 6, and it varies with
respect to different problems. In line 1, the current search point
is defined as a combination of previous two search points, and
in lines 4-10, the optimal step size γi is chosen by the line
search strategy.



(a) Scalability of COX-TRACE w.r.t. feature dimension (b) Scalability of COX-TRACE w.r.t. sample size (c) Scalability of COX-TRACE w.r.t. task number

(d) Scalability of COX-cCMTL w.r.t. feature dimension (e) Scalability of COX-cCMTL w.r.t. sample size (f) Scalability of COX-cCMTL w.r.t. task number

Fig. 3: Empirical scalability study of COX-TRACE model (upper panel) and COX-cCMTL model (lower panel) in terms of
computational time. The y-axis in each sub-figure represents the total running time for 10 regularization scales, i.e., λ for COX-
TRACE and {ρ1, η} for COX-cCMTL, averaged over five trials. Note that, we employ warm-start technology, i.e., the initial
search point of the coefficient matrix is the optimal value learned in the previous training phase, which help the model start with
a searching point that is not far from the optimal solution. Therefore, the practical scalability of these two models are better
than their corresponding theoretical upper bound.


